Depth Filter Type V

The depth filter for the removal of water, oil aerosols and solid particles from compressed air and gases with validated retention rate acc. ISO 12500-1 and ISO 5011.

Product description:

The filter elements type V are designed for the processing of compressed air or gases in industrial applications.

Validated performance data acc. to ISO 12500-1 for reliable achievement of compressed air quality suitable due to the application acc. to ISO 8573-1.

By a flow-optimised design of the filter element as well as by the assigned filter media and the advanced production technology, the differential pressure is minimized and a continuously high separation effiency is ensured.

The filter elements type V possess the three-dimensional micro fibre fleece made of polyester, which works oil and waterrejecting.

By utilising various filtration mechanisms such as retention by direct impact, sieveeffect and diffusion effect, liquid aerosols and solid particles are being retained in the filter.

Applications:

The depth filter is for example being utilised in the following industries:

- · Pre-filtration upstream fridge and adsorption dryers
- Pre-filter for the removal of larger amounts of liquids
- Applications with expected high particle intake
- After-filter downstream adsorption dryers

Depth filter type V

Element Type	Flowrate at 7 bar g m³/h *
0035	35
0070	70
0120	120
0210	210
0320	320
0450	450
0600	600
0750	750
1100	1100

Sizing example for pressure which deviates from nominal pressure:

V_{nom} = 350 m³/h, operating pressure = 9 bar (g)

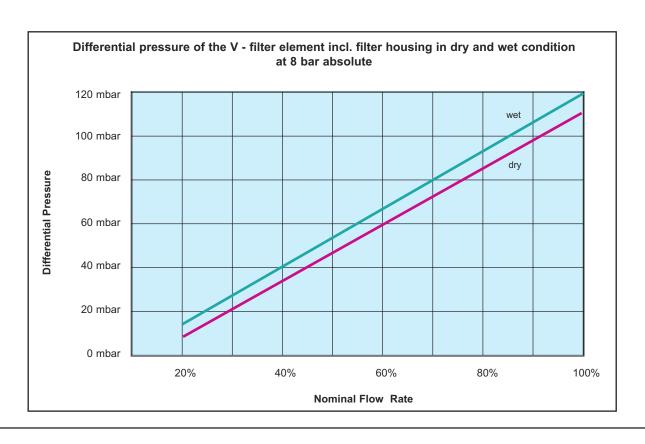
$$\dot{V}_{corr} = \frac{V_{nom}}{f_p}$$

$$V_{corr} = \frac{350 \text{ m}^3/\text{h}}{1.25} = 280 \text{ m}^3/\text{h}$$

Calculated Size: Type 0320

sure on factor p		
25		
38		
0.50		
0.63		
0.75		
0.88		
00		
13		
25		
1.38		
50		
63		
75		
88		
00		
13		

 $^{^{*}}$ m 3 /h related to 1 bar abs. and 20 $^{\circ}$ C


Depth Filter Type V

Features:	Benefits:		
Validated performance data acc. to ISO 12500-1	Reliable reaching of the compressed air quality according to ISO 8573-1		
Intelligent total concept	Flow range, filtration grades, efficiencies and available options perfectly meet requirements of air purification		
Flow optimised design	Minimum pressure losses, thereby savings of energy costs		
Coalescence sleeve fixed by outside support sleeve	No inflation of the coalescence sleeve; flow area between element and housing guaranteed at any time; optimised drainage function by constant stabile structure of the coalescence sleeve		
Support sleeve made of stainless steel meshed grid	Protection of the filter media against pressure shocks		
Use of stainless steel material with glass fiber reinforced polyamide	Optimal corrosion protection		

Materials:			
Filter media	Polyester fibre fleece		
Coalescense sleeve	Polyester fleece		
Inner and outer support sleeves	Stainless steel 1.4301 / 304		
End caps	Glass fibre reinforced polymer		
O-Rings	Viton: silicone free and free of compound (Standard)		
Bonding	Polyurethane		

Validation:		
Validation of high-effiency filters		
acc.to ISO 12500-1 (oil) and		
ISO 5011 (particles)		

	Particle retention rate Oil retention rate related to particles acc. to ISO 12500-1				Residual oil con	itent at inlet co	ncentration
≥ 1 µm	≥ 5 µm	≥ 9 µm			10 mg/Nm ³	3 mg/Nm ³	
η (V) = 99,65%	η (V) = 99,90%	η (V) = 100%	η (V) = 96%	m _{Öl} (V) [mg/Nm ³]	< 0,5	< 0,2	

